Article | July 18, 2022

Why Super-Resolution Microscopy Benefits From Piezo Technology

Super-Resolution microscopy allows insights into intracellular processes and interactions at a molecular level. During the past two decades, advances in the field have led to significantly higher resolved images, faster processing times, and further insight into the functionality of molecular machines within cells. We discuss how nanometer precision measuring and positioning technology has been a major enabler for rapid advances in this field, and the importance of nanopositioning for Super-Resolution microscopy applications.


The development of super-resolution microscopy (SRM) has led to renewed interest in the use of optical microscopy in a number of areas of life sciences research, especially neuroscience and molecular cell biology. First proposed in 1978, this technique overcomes the so-called Abbe diffraction limit – described by German physicist Ernst Abbe over 100 years earlier in 1873 – allowing structures of less than 200 nanometers to be distinguished with fluorescence-based light microscopy. 

Super-Resolution microscopy remained a niche technique until around 15 to 20 years ago, when researchers began combining a number of separate super-resolution technologies – including light sheet, 4Pi, STED (stimulated emission depletion), PALM (photoactivation localization microscopy), and STORM (stochastic optical reconstruction microscopy) – to create systems capable of achieving spatial resolutions down to around 20 nanometers. This development led to Eric Betzig, Stefan W. Hell, and William E. Moerner being awarded the 2014 Nobel Prize in Chemistry, and has greatly enhanced our understanding of many intracellular processes and molecular interactions.  


Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Med Device Online? Subscribe today.

Subscribe to Med Device Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.


Subscribe to Med Device Online